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Abstract. Quantifying continental-scale river discharge is essential to understanding the terrestrial water cycle but is 
susceptible to errors caused by a lack of observations and the limitations of hydrodynamic modeling. Data assimilation (DA) 
methods are increasingly used to estimate river discharge in combination with emerging river-related remote sensing products 
(e.g., water surface elevation [WSE], water surface slope, river width, and flood extent). However, directly comparing 10 
simulated WSE to satellite altimetry data remains challenging (e.g., because of large biases between simulations and 
observations or uncertainties in parameters), and large errors can be introduced when satellite observations are assimilated into 
hydrodynamic models. In this study we performed direct, anomaly, and normalized value assimilation experiments to 
investigate the capacity of DA to improve river discharge within the current limitations of hydrodynamic modeling. We 
performed hydrological DA using a physically-based empirical localization method applied to the Amazon Basin. We used 15 
satellite altimetry data from ENVISAT, Jason 1, and Jason 2. Direct DA was the baseline assimilation method and was subject 
to errors due to biases in the simulated WSE. To overcome these errors, we used anomaly DA as an alternative to direct DA. 
We found that the modeled and observed WSE distributions differed considerably (e.g., differences in amplitude, seasonal 
flow variation, and a skewed distribution due to limitations of the hydrodynamic models). Therefore, normalized value DA 
was performed to improve discharge estimation. River discharge estimates were improved at 24%, 38%, and 62% of stream 20 
gauges in the direct, anomaly, and normalized value assimilations relative to simulations without DA. Normalized value 
assimilation performed best for estimating river discharge given the current limitations of hydrodynamic models. Most gauges 
within the river reaches covered by satellite observations accurately estimated river discharge, with Nash-Sutcliffe efficiency 
(𝑁𝑆𝐸) 	> 	0.6. The amplitudes of WSE variation were improved in the normalized DA experiment. Furthermore, in the 
Amazon Basin, normalized assimilation (median 𝑁𝑆𝐸 = 0.50) improved river discharge estimation compared to open-loop 25 
simulation with the global hydrodynamic model (median	𝑁𝑆𝐸 = 0.42). River discharge estimation using direct DA methods 
was improved by 7% with calibration of river bathymetry based on 𝑁𝑆𝐸. The direct DA approach outperformed the other DA 
approaches when runoff was considerably biased, but anomaly DA performed best when the river bathymetry was erroneous. 
The uncertainties in hydrodynamic modeling (e.g., river bottom elevation, river width, simplified floodplain dynamics, and 
the rectangular cross-section assumption) should be improved to fully realize the advantages of river discharge DA through 30 
the assimilation of satellite altimetry. This study contributes to the development of a global river discharge reanalysis product 
that is consistent spatially and temporally. 

1 Introduction 

River discharge plays a pivotal role in the global water cycle and thereby affects human livelihoods (Oki and Kanae, 2006). 
River discharge can be used to assess water resources, biogeochemistry, and the carbon cycle in terrestrial waters and is the 35 
single most important parameter affecting the flow dynamics of rivers (Gleason and Durand, 2020). The ability to measure 
global river discharge via insitu gauging is limited by a lack of accurate, complete, and freely available data (Hannah et al., 
2011; Shiklomanov et al., 2002; Vörösmarty et al., 2001). Because of the limited temporal coverage and spatial heterogeneity 
of insitu gauging networks, elucidating the terrestrial water cycle is essential. 

https://doi.org/10.5194/egusphere-2022-412
Preprint. Discussion started: 6 July 2022
c© Author(s) 2022. CC BY 4.0 License.



2 
 

As a result of recent computational advances, global hydrologic/hydrodynamic models (GHMs) have been used extensively 40 
to study the terrestrial water cycle (Döll et al., 2016; Sood and Smakhtin, 2015). Simulated water dynamics obtained from 
GHMs are used to compensate for unavailable ground observations. GHMs simulate water dynamics in discretized river 
segments to increase computational efficiency. Nevertheless, they are subject to numerous limitations, including simplified 
model structures, imperfect external forcing, and uncertainties in model parameters (Liu and Gupta, 2007; Renard et al., 2010). 
These inadequacies are due to both a lack of information about physical processes and simplifications made to limit 45 
computational costs. There are considerable uncertainties in model parameters such as river bottom elevation due to a lack of 
measurements or limitations of estimation methods that affect model outputs (Brêda et al., 2019). Uncertainties in the forcing 
factors (i.e., runoff) are also partially responsible for uncertainty in the surface water dynamics (Emery et al., 2020c). In 
combination, these constraints result in unavoidable uncertainties in GHM simulations of water dynamics. 
Given the current limitations of GHMs, satellite altimetry observations provide an alternative method of estimating surface 50 
water dynamics (Feng et al., 2021). Satellite altimetry quantifies the water surface elevation (WSE) by measuring the time 
required for the radar pulse to travel between the satellite and the water surface. Beginning with GEOS-3 in 1975, numerous 
satellite altimetry missions have been deployed to obtain measurements of terrestrial water surfaces. Although some of these 
satellites were developed for other purposes (i.e., observing the sea surface), their application has expanded to include river 
and lake observations (Birkett et al., 2002; Crétaux et al., 2009; Santos da Silva et al., 2010). Commonly used satellite missions 55 
for river observations are ENVISAT, Jason 1, Jason 2, Sentinel 3A, and Sentinel 3B (Bannoura, 2001; Resti et al., 2002; 
Zwally et al., 2002). The Surface Water and Ocean Topography (SWOT) satellite will provide an unprecedented amount of 
data on surface waters (Biancamaria et al., 2016; Fu et al., 2012). The greatest impediment to the use of these satellites is their 
limited spatial and temporal coverage, which ranges from a few days to several months between successive observations of 
specific locations. Hence, satellite altimetry observations may not provide a comprehensive view of the terrestrial water cycle 60 
because of their spatial and temporal sparseness. 
Surface water dynamics can be clarified by combing remote sensing data with a limited amount of observational data in 
continental-scale hydrodynamic models. Data assimilation (DA) is a mathematical technique that combines a physical model 
with external observations, accounting for their uncertainties, to improve model outputs or replicate the evaluation of an actual 
system (Emery et al., 2020a). By leveraging remote sensing data, DA methods can be used to bridge the gap between models 65 
and ground observations. DA approaches are widely used in meteorology and oceanography (e.g., Anderson, 2007; Evensen 
and van Leeuwen, 2002; Miyoshi and Yamane, 2007) and have recently been used in large-scale hydrology (e.g., Clark et al., 
2008; Emery et al., 2018; Michailovsky et al., 2013; Paiva et al., 2013a; Revel et al., 2021; Wongchuig et al., 2019). They 
have also been used to correct hydrodynamic parameters such as river bathymetry (Brêda et al., 2019; Yoon et al., 2012), 
Manning’s coefficient (Emery et al., 2020a; Pedinotti et al., 2014), and floodplain bathymetry and slope (Durand et al., 2008). 70 
Emery et al., (2020c) used DA to improve the accuracy of runoff forcing by integrating discharge observations. Using operation 
system simulation experiments, researchers have thoroughly investigated the potential for improving river discharge through 
the assimilation of remote sensing data (Andreadis et al., 2007; Andreadis and Schumann, 2014; Biancamaria et al., 2011; 
Revel et al., 2019, 2021). In situ (Clark et al., 2008; Paiva et al., 2013a; Wongchuig et al., 2019) or remotely sensed (Emery 
et al., 2020b; Feng et al., 2021; Ishitsuka et al., 2020) discharge assimilation performs better, but the unavailability of ground 75 
observations and the limitations of remotely sensed river discharge values may hamper the performance of these DA schemes. 
Thus, DA approaches based on remotely sensed data can be used to improve the performance of global hydrodynamic models. 
Although DA approaches can improve model performance, hydrodynamic models are not yet mature enough to directly 
assimilate satellite altimetry data (Emery et al., 2020a). Because of ambiguity in digital elevation models (DEMs), flaws in 
hydraulic parameters (e.g., river bathymetry), and the simplification of cross-section parameters, simulated WSE may have 80 
substantial errors. Several methods have been used to circumvent these limitations, including assimilating anomalies (i.e., 
removing the long-term mean WSE) and using a common datum (e.g. Emery et al., 2020a; Michailovsky et al., 2013; Paiva et 
al., 2013a; Wongchuig-Correa et al., 2020). The inaccuracies that cause biases between simulated WSE and altimetry can be 
decreased by using anomalies or a common datum when assimilating satellite altimetry into large-scale hydrodynamic models. 
To improve river discharge estimation in the Brahmaputra River, Michailovsky et al., (2013) assimilated measurements from 85 
the ENVISAT satellite into a rainfall-runoff model using a common reference for satellite altimetry and simulated river depth 
(i.e., adding the difference between modeled river depth and altimetry elevation to satellite altimetry). Likewise, anomalies 
from ENVISAT observations were assimilated into a continental-scale hydrologic/hydrodynamic model and compared to 
insitu and remotely sensed river discharge data in the Amazon Basin (Paiva et al., 2013a). Moreover, global-scale 
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hydrodynamic modeling studies have used anomaly assimilation to eliminate biases in simulated WSE (Brêda et al., 2019; 90 
Emery et al., 2020a; Paiva et al., 2013a; Wongchuig-Correa et al., 2020). However, anomaly assimilation does not provide 
accurate river discharge estimates for the Amazon Basin (Paiva et al., 2013a), as it cannot compensate for discrepancies in 
flow dynamics between observations and simulations. These differences in flow dynamics can be attributed to several factors, 
including differences in amplitude due to limited river width (De Paiva et al., 2013; Yamazaki et al., 2012), differences in 
seasonal flow due to failure to capture anthropogenic activity (Hanazaki et al., 2022; Pokhrel et al., 2018; Shin et al., 2020), 95 
and differences in flow variation due to the assumption of rectangular cross-sections (Neal et al., 2015; Saleh et al., 2013). 
Given such uncertainties in parameters and the structural simplification of current hydrodynamic models, anomaly assimilation 
of satellite altimetry may not be effective for estimating river discharge (Liu et al., 2012; Paiva et al., 2013a). Therefore, 
alternative approaches to direct and anomaly assimilation are required to integrate satellite altimetry into existing 
hydrodynamic models. 100 
In the present study, we evaluated the potential of assimilating satellite altimetry into a global-scale hydrodynamic model to 
improve river discharge estimation. We investigated methods of assimilating satellite altimetry data into a hydrodynamic 
model (within current limitations) without contamination from the errors of simulated WSE. Large biases between satellite 
altimetry and simulated WSE are driven by uncertainties in parameters, whereas simplified physics and a lack of representation 
of anthropogenic activity (e.g., reservoir operations) introduce differences in the WSE distribution between simulations and 105 
observations. To effectively replace direct value assimilation, we propose alternative methods for DA in the Amazon Basin, 
including anomaly and normalized value assimilation. The hydrodynamic model used in this study was the Catchment-based 
Macro-scale Floodplain model (CaMa-Flood: Yamazaki et al., 2011) with the local ensemble transform Kalman filter (LETKF: 
Hunt et al., 2007), which we used to assimilate satellite altimetry using a physically-based empirical localization approach 
(Revel et al., 2019). The methodology is described in Section 2, and the findings are presented in Section 3. The discussion 110 
and conclusion are presented in Sections 4 and 5, respectively. 

2 Methodology 

2.1 Data assimilation framework  

Using a physically-based empirical localization approach, we developed a DA framework to incorporate satellite altimetry 
into a hydrodynamic model (Revel et al., 2021). The DA framework developed in this study is represented schematically in 115 
Figure 1a. A collection of runoffs created with Earth2Observe’s “Global Earth Observation for Integrated Water Resource 
Assessment” (E2O), a tier-2 Water Resources Reanalysis (WRR2) runoff data set, forced the ensemble simulations. As runoff 
is the single largest source of error in hydrodynamic modeling (Paiva et al., 2013a; Wongchuig et al., 2019), we simply 
perturbed the runoff forcing ("Runoff Ensemble"). CaMa-Flood (Yamazaki et al., 2011) was the hydrodynamic core of the DA 
scheme, and LETKF (Hunt et al., 2007) was the DA algorithm. CaMa-Flood simulations provide the current water state (i.e., 120 
WSE) and correct that value using satellite altimetry. The assimilation scheme takes advantage of physically based empirical 
local patches (Revel et al., 2019). The initial water state at time 𝑇 (𝑥!") and runoff are used to simulate the forecasted water 
state at time 𝑇 + ∆𝑇	3𝑥!#∆!

% 4 using the CaMa-Flood hydrodynamic model. The water status is then updated (𝑥!#∆!" ) via DA, 
and any modifications are transferred to the initial condition of the following time step. In anomaly and normalized value 
assimilation scenarios, the forecasted water state is transformed to anomalies or normalized values using the long-term mean 125 
and standard deviation for the assimilation of converted (anomalies or normalized values) satellite altimetry. Then the 
assimilated water states expressed as anomalies or normalized values were converted into natural values (i.e., corrected WSE). 
Further information about the transformation of water states is presented in Section 2.3. 
To match the WSE obtained from satellite altimetry, we allocated virtual stations (VSs) to the CaMa-Flood river network, 
accounting for the Multi-Error-Removed Improved-Terrain DEM (MERIT DEM; Yamazaki et al., 2017, 2019) elevations and 130 
river size. The methods used to allocate VSs to the CaMa-Flood river network are illustrated in  Figure 1b. First we digitized 
to the high-resolution (i.e., 3arc-sec) MERIT Hydro (conditioned DEM) map by using latitude and longitude information to 
identify the nearest river. The high-resolution locations were then mapped to coarse-resolution river reaches, which were used 
in CaMa-Flood simulations. Finally, VSs with considerable variation in mean WSE compared to the MERIT Hydro (Yamazaki 
et al., 2017, 2019) elevation (expressed as riverbank height) were filtered through comparison of mean observations and 135 
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riverbank heights (i.e., VSs with mean WSE above or below the 10 m riverbank height of the MERIT river network were 
removed). Next all satellite altimetry elevations were converted into EGM96 from EGM08 via geoid conversion. Allocation 
of VSs to the CaMa-Flood river network is a vital step in the assimilation framework. 
Using simulated long-term WSE values, we determined the localization parameters (i.e., local patch and observation 
localization weights; Figure 1c). Deriving empirical localization parameters involved simulating WSE with CaMa-Flood, 140 
processing the data, running semi-variogram analyses, and assigning a threshold to spatial dependence weights. The physically-
based empirical localization DA approach outperformed traditional localization methods (Revel et al., 2019). Hence, when 
combined with LETKF, these localization parameters provide a foundation for efficient continental-scale DA. 

2.2 Hydrodynamic Model 

To diagnose the time-varying water states in the DA scheme, we used CaMa-Flood (Yamazaki et al., 2011), which is a large-145 
scale distributed hydrodynamic model. CaMa-Flood uses a local inertial flow equation, which is a computationally efficient 
variant of the shallow-water equation (Bates et al., 2010; Yamazaki et al., 2011), to determine river hydrodynamics (e.g., 
discharge, WSE, flood depth, flooded area). Runoff (surface and subsurface flow of water per unit area) from a land surface 
model (LSM) forces the model, and water is routed through the river network at adaptive time steps (Yamazaki et al., 2013). 
CaMa-Flood is capable of simulating floodplain dynamics, complex hydrodynamics such as the backwater effect (Yamazaki 150 
et al., 2011, 2012), and bifurcation flow (Yamazaki et al., 2014b). It is a physically-based model that can simulate WSE; 
combining CaMa-Flood with MERIT DEM (Yamazaki et al., 2017, 2019) improves its performance relative to satellite 
altimetry. Consequently, the CaMa-Flood hydrodynamic model is appropriate for the DA framework described in Section 2.1. 
We used CaMa-Flood version 4.0, which was developed with MERIT-DEM and MERIT-Hydro (Yamazaki et al., 2017, 2019) 
at a spatial resolution of 0.1°. The simulations used the standard parameters (river channel depth, river width, roughness 155 
coefficient, and floodplain profile) of CaMa-Flood. The river channel depth was estimated using a power law (Yamazaki et 
al., 2011; Zhou et al., 2022). River widths were determined with remote sensing (Yamazaki et al., 2014a), and the roughness 
coefficient was approximated as a global constant (0.03). MERIT-DEM and MERIT-Hydro were used to construct the river 
network (Yamazaki et al., 2017, 2019).  

Figure 1: a) Data assimilation framework, b) schematic diagram of satellite altimetry preprocessing, and c) derivation of the 
localization parameters. 
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2.3 Water surface elevation transformation 160 

Because of the large biases in simulated WSE, direct comparison with satellite altimetry is difficult. Figure 2a presents an 
example of WSE bias and a comparison of satellite altimetry with simulated WSE. This figure shows that direct DA can 
introduce additional biases into assimilated WSE. These biases are caused by inaccuracies in parameters such as riverbank 
elevation height errors and river bathymetry errors as well as differences in elevation due to hydrodynamic model resolution 
(i.e., models assume the unit-catchment outlet elevation as the riverbank elevation of the river reach). Converting WSE into 165 
anomalies can reduce the challenges created by large differences between simulated and observed WSE values. WSE 
anomalies were generated by subtracting the time-averaged reference WSE (i.e., the long-term mean) from the current WSE. 
Therefore, each ensemble member had a different reference WSE value. 
Although the use of anomalies can overcome the bias between observations and simulations, differences in flow variation 
between simulated and observed WSE remain (e.g., a difference in the amplitude of WSE variation, upstream water regulations 170 
that do not represent in the model). An example of a difference in flow variation is presented in Figure 2b. The flow dynamic 
variation between simulations and observations can be overcome by using normalized values (i.e., subtracting the long-term 
mean and dividing by standard deviation) when assimilating satellite altimetry into contemporary hydrodynamic models. To 

Figure 2: a) Schematic diagram of the bias between simulated and observed WSE and an example of the bias between simulated and 
observed water surface elevation (WSE) at the HydroWeb VS R_AMAZONAS_JARI_KM0529. b) Difference between simulation 
(CaMa-Flood) results and observations with distribution differences shown as a boxplot, probability distribution, and an example 
of difference in amplitude between simulated and observed WSE at the HydroWeb VS R_AMAZONAS_JUTAI_KM3182. 
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more accurately compensate for distribution discrepancies and estimate river discharge, we used normalized value assimilation. 
We normalized the current WSE values using the time-averaged reference WSE and standard deviation of WSE for each 175 
perturbation in the ensemble. Hence, each perturbation had a unique reference WSE and standard deviation of WSE.  

2.4 Local Ensemble Transformation Kalman Filter 

DA aims to overcome differences between observations and simulations by combining uncertain and complementary 
information from observations. In this study, LETKF (Hunt et al., 2007), which is a computationally efficient variant of the 
ensemble Kalman filter (EnKF: Evensen, 2003), an advanced Kalman filter (Kalman, 1960), was used as the DA method. We 180 
used a physically-based empirical localization approach (Revel et al., 2019, 2021) to enhance the computational efficiency of 
global-scale DA.  
The LETKF is a commonly used DA algorithm (e.g., Feng et al., 2021; Ishitsuka et al., 2020; Revel et al., 2019, 2021b; 
Wongchuig-Correa et al., 2020) for nonlinear models, which are needed for modeling hydrodynamic processes. The nonlinear 
hydrodynamic model can be shown in discrete form as follows: 185 

𝒙𝒌"𝟏 =𝓜(𝒙𝒌, 𝒖𝒌, 𝝑) + 𝒒𝒌, (1)  

where 𝑥, 𝑢, and 𝜗 represent the vector of the state variable, model forcing, and model parameters, respectively. The nonlinear 
model operator, ℳ, is related to the time interval of 𝑡& to 𝑡&#', whereas errors in the model structure, parameters, forcing, and 
antecedent states are represented by 𝑞&. All state variables in CaMa-Flood, such as river discharge, WSE, flooded area, flood 
height, and storage, are included within the vector 𝑥. The model states can be related to the observations as follows: 

𝒚𝒌 = 𝑯(𝒙𝒌) + 𝜺𝒌, (2)  

where 𝑦 is the observation vector; 𝜀 is the vector of observation errors; and 𝐻 is the linear observation operator, which relates 190 
the model states (𝑥) to the observations (𝑦). In this study, the observations were WSE obtained from satellite altimetry. In the 
anomaly and normalized value assimilations, the observed and forecasted states were transformed into anomalies and 
normalized values, respectively (Section 2.3, Figure 2). The LETKF assimilation algorithm was used to obtain the optimal 
estimate of the model state variable 𝑋" (analysis) considering the model and observation errors. LETKF analysis is expressed 
as  195 

𝑿𝒂 = 𝑿𝒇 + 𝑬𝒇 @𝑽𝑫–𝟏𝑽𝑻3𝑯𝑬𝒇4𝑻 D𝑹
𝒘
E
–𝟏
3𝒀𝒐–𝑯𝑿𝒇4 + √𝒎–𝟏𝑽𝑫–𝟏 𝟐⁄ 𝑽𝑻K, (3)  

where 𝑋" is the posterior state estimator (or analysis), 𝑋% is the prior state estimator (or forecast), 𝑌2 is the observation (i.e., 
the WSE value obtained from satellite altimetry), 𝐻 is the observation operator, 𝑚 is the ensemble size, 𝐸% is the prior state 
error covariance obtained directly from the perturbations, 𝑅  is the observation error covariance determined from the 
uncertainty of the measurements, 𝑤  is the weighting term for observation localization calculated with semi-variogram 
analysis of the simulated WSE (Revel et al., 2019), and 𝑉𝐷𝑉! is defined as 200 

𝑽𝑫𝑽𝑻 = (𝒎–𝟏)𝑰 + 3𝑯𝑬𝒇4𝑻𝑹–𝟏𝑯𝑬𝒇 (4)  

where 𝐼	 is the unit matrix of dimension 𝑚×𝑚 , representing the number of perturbations. 𝑉𝐷–'𝑉!  and 𝑉𝐷–' 3⁄ 𝑉!  are 
calculated through eigenvalue decomposition of 𝑉𝐷𝑉!. 

2.5 Generation of Ensembles 

CaMa-Flood diagnoses terrestrial water dynamics forced by surface and subsurface runoff values simulated using LSMs. LSMs 
are subject to flaws such as simplified physics (e.g., hill slope dynamics; (Fan et al., 2019) and uncertainty in the forcing data). 205 
We stochastically perturbed the runoff forcing of the CaMa-Flood hydrodynamic model. The errors in runoff can be attributed 
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to the limitations of LSM physics and uncertainty in the forcing data sets. We assumed that the uncertainty of the LSM’s 
physical processes could be represented by the variability of the multi-model runoff diagnosed in the E2O WRR2 data set 
(Dutra et al., 2017). The uncertainty of the forcing (e.g., precipitation, radiation) was represented by normally distributed 
random numbers with a standard deviation calculated from the ensemble spread of the 20th-century atmospheric model 210 
ensemble (ERA20CM: Hersbach et al., 2015) runoff data set. We multiplied each runoff from the E2O WRR2 data set (seven 
runoff data sets from E2O WRR2 were used) by a random number from a normal distribution with mean = 1 and standard 
deviation = 0.1 according to the ERA20CM runoff ensemble. We used seven runoff outputs from the models HTESSEL 
(Balsamo et al., 2011), PCR-GLOBWB (Van Beek et al., 2011; Sutanudjaja et al., 2014), JULES (Best et al., 2011; Clark et 
al., 2011), LISFLOOD (Burek et al., 2013; Van Der Knijff et al., 2008), ORCHIDEE (d’Orgeval et al., 2008), WaterGAP3 215 
(Flörke et al., 2013; Verzano, 2009), and W3 (Van Dijk et al., 2013) of E2O WRR2 (Dutra et al., 2017). Therefore, 49 
perturbations were used to prepare the “Runoff Ensembles” (Figure 1) using runoff fields from the E2O WRR2 runoff product, 
which generally produce a reasonable ensemble of runoff forcing for global DA. 
 

2.6 Experimental Design 220 

We performed three types of experiment: direct DA (Exp 1), anomaly DA (Exp 2), and normalized DA (Exp 3). Exp 2 was 
performed because assimilating WSE anomalies rather than direct values can overcome the errors associated with direct DA. 
Although anomalies can overcome the biases between observations and simulations, differences in flow variation between 
simulated and observed WSE could not be overcome by anomaly DA method (Figure 2b). To overcome the flow dynamic 
variation between simulations and observations, we performed Exp 3. Both forecasted values and observations were 225 
transformed into anomalies (Exp 2) and normalized values (Exp 3) for the DA experiments. The three assimilation approaches 
were used to identify the optimal assimilation methodology for improving discharge estimation within the present limits of 
hydrodynamic modeling. The anomalies and normalized values were calculated from the long-term (2000–2014) mean and 
standard deviation of WSE for the anomaly and normalized value DA experiments. For all experiments, simulations began on 
January 1, 2009, and ran through December 31, 2014.  The year 2008 was used for spin-up.  230 
We selected the Amazon Basin as the test area for our DA experiments. The Amazon Basin is the world’s largest hydrological 
system, with a catchment area of approximately 6 million km2 (Reis et al., 2019), and contributes nearly one fifth of the total 
fresh water discharged into the ocean (Paiva et al., 2013a). The flow dynamics of the Amazon Basin, ranging from seasonal 
flooding (Papa et al., 2010; Prigent et al., 2020) to complex river hydraulics such as hysteresis in the stage-discharge 
relationship driven by the backwater effect (Paiva et al., 2013b; De Paiva et al., 2013), have been studied extensively. This 235 
basin receives substantial annual rainfall (≈ 2200	𝑚𝑚) with high spatial heterogeneity and experiences distinct rainy and dry 
seasons in the southern and eastern portions. The major advantage of analyzing the Amazon Basin is the availability of a large 
number of observations (Fassoni-Andrade et al., 2021). 
 

2.7 Observations 240 

2.7.1 Satellite altimetry 

We used satellite altimetry as observations for all DA experiments (Section 2.6). Satellite altimetry was originally developed 
to observe ocean surfaces, but its application has expanded through the creation of algorithms to detect surface water dynamics 
(Birkett et al., 2002; Crétaux et al., 2009; Santos da Silva et al., 2010). Satellite altimetry data were obtained from HydroWeb 
(https://hydroweb.theia-land.fr/). Satellite altimetry measurements from ENVISAT and Jason 1, and Jason 2 were used 245 
depending on data availability during the simulation period (2009–2014), as listed in Table 1. Table 1 summarizes the 
availability periods, temporal resolutions, cross-track distances, and measurement errors of the satellites used in this study. 
The spatial distribution of VSs is illustrated in Figure 3.Using the methodology described in Section 2.1, we allocated the VSs 
to river pixels in CaMa-Flood (Figure 1b). Preprocessing excluded around 3% of VSs from analyses, which may have 
generated considerable inaccuracies, in particular in the experiments with direct value assimilation (Exp 1a and Exp 1b). The 250 
WSE data obtained from satellite altimetry were converted from EGM08 to EGM96, as the EGM96 geoid model is used in 
MERIT-DEM/MERIT-Hydro (Yamazaki et al., 2017, 2019).  
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Table 1: Summary of satellite altimetry data used in this study. Period of availability, measurement error, temporal resolution, and 
cross-track distance are shown. 

Satellite Period Measurement Error (mm) Temporal Resolution (days) Cross-Track Distance (km) 

ENVISAT 2002–2012 35 30–35 80 

Jason 1 2001–2013 28 10 315 

Jason 2 2008–present 28 10 315 

2.7.2 Validation data 255 

As we assimilated only WSEs from satellite altimetry, we used Global Runoff Data Centre (GRDC) river discharge data for 
validation. We used river discharge gauges located in the main river reaches (upstream catchment area > 1000 km2) and gauges 
with observational data covering at least 1 year of the simulation period. Furthermore, we randomly segregated the satellite 
altimetry measurements from 324 VSs into assimilation (80%) and validation (20%) data sets (Figure 3). Consequently, we 
used only 80% of the VSs for the DA experiments.  260 

2.8 Evaluation Diagnostics 

We evaluated relative assimilation efficiency using several diagnostics. The difference in correlation coefficient (∆𝑟) between 
assimilated and open-loop simulations was assessed to evaluate improvement in the flow pattern of the discharge. ∆𝑟 was 
calculated as 

∆𝒓 = 𝒓𝒂𝒔𝒎– 𝒓𝒐𝒑𝒏, (5)  

where the correlation coefficients of the assimilated and open-loop simulations are represented by 𝑟"89 and 𝑟2:;, respectively. 265 
Then the relative efficacy of WSE was assessed with the relative root mean square error (𝑟𝑅𝑀𝑆𝐸):  

Figure 3: Spatial distribution of satellite virtual stations (VSs) used in this study. ENVISAT VSs are shown in red, and Jason 1 and 
Jason 2 VSs are in blue. VSs used for assimilation and validation are indicated with squares and circles, respectively. 
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𝒓𝑹𝑴𝑺𝑬 = 𝑹𝑴𝑺𝑬𝒂𝒔𝒎 −𝑹𝑴𝑺𝑬𝒐𝒑𝒏 (6)  

 

𝑹𝑴𝑺𝑬 = 4∑ (𝒔𝒊 − 𝒐𝒊)𝟐𝑵
𝒊-𝟏

𝑵  (7)  

where 𝑅𝑀𝑆𝐸"89 and 𝑅𝑀𝑆𝐸2:; are the 𝑅𝑀𝑆𝐸 values of the assimilated and open-loop simulations, respectively. 𝑠 and 𝑜 are 
simulation results and observations, respectively. 𝑁 is the number of observations in the timeseries. The Nash-Sutcliffe (Nash 
and Sutcliffe, 1970) efficiency-based assimilation index (𝑁𝑆𝐸𝐴𝐼; Revel et al., 2021) was used to evaluate the improvement in 270 
river discharge with DA: 

𝑵𝑺𝑬𝑨𝑰 =
𝑵𝑺𝑬𝒂𝒔𝒎 −𝑵𝑺𝑬𝒐𝒑𝒏

𝟏 −𝑵𝑺𝑬𝒐𝒑𝒏
 (8)  

 
where 𝑁𝑆𝐸"89  and  𝑁𝑆𝐸2:;  are Nash-Sutcliffe (Nash and Sutcliffe, 1970) efficiencies for the assimilated and open-loop 
simulations, respectively. Similarly, the Kling-Gupta (KGE: Kling and Gupta, 2009) efficiency-based assimilation index 
(𝐾𝐺𝐸𝐴𝐼) was used to evaluate improvement. The relative interval skill score (𝑟𝐼𝑆𝑆) was used to compare the ensemble spread 275 
of the assimilated and open-loop simulations. 𝑟𝐼𝑆𝑆 is defined as follows: 

𝒓𝑰𝑺𝑺 =
<𝑰𝑺𝑺𝒂𝒔𝒎 − 𝑰𝑺𝑺𝒐𝒑𝒏=

𝑰𝑺𝑺𝒐𝒑𝒏
 (9)  

𝑰𝑺𝑺𝜶 =>𝒊𝒔𝒔𝜶(𝒍𝒊, 𝒖𝒊, 𝒐𝒊)
𝑵

𝒊-𝟏

	 (10)  

𝒊𝒔𝒔𝜶(𝒍, 𝒖, 𝒐) = B
(𝒖 − 𝒍)	; 𝒊𝒇	𝒍 < 𝒐 < 𝒖

(𝒖 − 𝒍) + 𝟐 𝜶H (𝒍 − 𝒐)		; 𝒊𝒇	𝒐 < 𝒍
(𝒖 − 𝒍) + 𝟐 𝜶H (𝒐 − 𝒖)	; 𝒊𝒇	𝒐 > 𝒖

	 (11)  

where 𝐼𝑆𝑆"89  and 𝐼𝑆𝑆2:;  are the 𝐼𝑆𝑆 values (Gneiting and Raftery, 2007) of the assimilated and open-loop simulations, 
respectively. 𝑢 and 𝑙 are the upper and lower confidence intervals for the estimate, 𝑜 is the observed value, and 𝛼 is the 
significance level. By rewarding narrow confidence intervals and penalizing observations outside the nominal confidence 
intervals, the 𝐼𝑆𝑆 incorporates both sharpness (i.e., the size of the confidence interval) and reliability (i.e., the proportion of 280 
observations that fall within the nominal confidence interval specified). When balancing sharpness and reliability, a relative 
comparison of 𝐼𝑆𝑆 (𝑟𝐼𝑆𝑆) allows for the evaluation of ensemble models; those with better performance have lower 𝐼𝑆𝑆 values. 
The significance level (𝛼) was set to 0.05 in this study. Furthermore, relative sharpness (𝑟𝑆ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠)	and difference in 
reliability (∆𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦)	were used to evaluate relative assimilation performance.  
We used 𝑁𝑆𝐸 (Nash and Sutcliffe, 1970) and KGE (Kling and Gupta, 2009) to evaluate the overall performance of river 285 
discharge. Furthermore, 𝑅𝑀𝑆𝐸, bias between the means of observations and simulation results (𝐵𝐼𝐴𝑆), and the difference in 
amplitude (∆𝐴) of WSE were evaluated. 

3 Results 

3.1 Relative Performance Evaluation 

In this section, we present the relative performance of each assimilation approach, namely, the direct, anomaly, and normalized 290 
value DA experiments. Here we analyze the performance of assimilated values with respect to the open-loop simulation. ∆𝑟 
represents the relative change in 𝑟 between the open-loop or assimilation results and observations. 𝑟𝑅𝑀𝑆𝐸 represents the 
deviation in the 𝑅𝑀𝑆𝐸 of assimilation relative to that of open-loop simulation. 𝑟𝐼𝑆𝑆, 𝑟𝑆ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠, and ∆𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 are used 
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to assess changes in ensemble spread between the open-loop and assimilated simulations. The results are presented in the order 
direct (Exp 1), anomaly (Exp 2), and normalized value (Exp 3) assimilation, followed by a comparison of the relative 295 
performance (i.e., ∆𝑟, 𝑁𝑆𝐸𝐴𝐼, 𝐾𝐸𝐺𝐴𝐼, 𝑟𝐼𝑆𝑆, 𝑟𝑆ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠, and ∆𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦) of these experiments. 

3.1.1 Direct assimilation of satellite altimetry 

In Exp 1, we assimilated direct satellite altimetry measurements into the CaMa-Flood hydrodynamic model. Figure 4a shows 
the improvement (degradation) in the correlation coefficient in green (violet) for river discharge at the GRDC locations in this 
study. 𝑟 improved in 8.1% of GRDC locations out of the 86 used for evaluating river discharge, whereas half of the gauges 300 
(48.8%) showed no difference. 𝑟 was reduced (∆𝑟 < 0) at several locations along the Madeira, Negro, and Purus tributaries 
(accounting for 43.0% of total gauges). We evaluated WSE performance using the relative change in 𝑅𝑀𝑆𝐸 between observed 
and simulated discharge (𝑟𝑅𝑀𝑆𝐸). Large negative (positive) values for 𝑟𝑅𝑀𝑆𝐸 indicate better (worse) performance of the 
DA scheme, which is denoted by blue (red). Overall, 56.4% and 50.8% of assimilation and validation VSs, respectively, 
showed reductions in 𝑅𝑀𝑆𝐸 with the assimilation of satellite altimetry into a hydrodynamic model. The WSE estimates 305 
obtained from the assimilated simulation with direct DA into a model were degraded (assimilation: 39.0%, validation: 41.5%) 
relative to the open-loop simulation in the Amazon mainstem and the Negro, Branco, Madeira, and Xingu rivers (Figure 4b). 
A limited number of gauges demonstrated no change with direct DA. 
Figure 4c, d, and e depicts hydrographs at Labera in the Purus River, Santos Dumont in the Purus River, and Santo Antonio 
Do Ica in the Amazon River, in that order. Each panel shows observations (black line), open-loop simulation results (blue line), 310 
assimilated discharge (orange line), and 95% confidence bounds for assimilated and open-loop river discharge. The discharge 
at Labera station (Figure 4c) improved in terms of 𝑁𝑆𝐸 and 𝐼𝑆𝑆 but not 𝑟. Substantial improvement in the 95% ensemble 
spread was evident until mid-2010, when the ENVISAT satellite was available. However, confidence intervals became larger 
after 2010. DA marginally improved 𝑁𝑆𝐸 scores, with low flows well replicated but peak flows showing some fluctuations. 
Santos Dumont (Figure 4d) showed an improvement in the correlation coefficient of river discharge, although NSE suffered 315 
from substantial underestimation of high flow. 𝐼𝑆𝑆 increased by 29%, primarily because of an improvement in sharpness, but 
reliability decreased. Figure 4e illustrates the variation in discharge at a station located in the mainstem of the Amazon River 
(Santo Antonio Do Ica), showing an improvement in 𝑁𝑆𝐸 values but a weakening of the correlation coefficient. At this location, 
the tradeoff between reliability and sharpness is strong. Sharpness is often enhanced when direct satellite altimetry 
measurements are assimilated into an uncalibrated hydrodynamic model, but reliability is reduced. 320 
In summary, direct DA generally improved flow dynamic simulation to a moderate extent. When direct satellite altimetry 
measurements were assimilated into the hydrodynamic model, the sharpness of river discharge improved. Furthermore, the 
accuracy of WSE estimates also improved with DA. 

3.1.2 Anomaly assimilation of satellite altimetry  

In Exp 2, anomalies of satellite altimetry were assimilated to anomalies of simulated WSE, with both anomalies produced 325 
using long-term means (for VS: mean of the available period; for WSE simulation: 2000–2014). Figure 5a depicts the ∆𝑟 of 
river discharge in Exp 2, with green indicating an improved 𝑟 relative to the open-loop simulation, which accounted for around 
53.5% of GRDC gauges used to evaluate river discharge. Some degradation (purple) in 𝑟 was observed in the Madeira and 
Purus rivers, Amazon mainstem, and smaller river reaches. WSE estimates improved in 76.1 % of assimilation VSs and 80.0 % 
of validation VSs (Figure 5b). WSE decreased (in terms of 𝑅𝑀𝑆𝐸) in the Jurua and Purus rivers, although nearly all other river 330 
reaches showed increases in the accuracy of WSE calculations with DA. 
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Figure 5c–e displays hydrographs of the Jurua (Gaviao), Amazon (Manacapuru), and Negro (Serrinha) rivers, respectively. At 
Gaviao station (Figure 5c), the 𝑟 of river discharge increased slightly, whereas 𝑁𝑆𝐸𝐴𝐼 and 𝑟𝐼𝑆𝑆 decreased. Although low 
flows were adequately characterized during the brief observation period, peaks were exaggerated, resulting in low 𝑁𝑆𝐸 and 
high 𝐼𝑆𝑆 for the assimilated simulation. River discharge in the Amazon mainstem, notably at Manacapuru gauge (Figure 5d), 335 
was well characterized, with improvements in ∆𝑟 and 𝑟𝐼𝑆𝑆 but deterioration of 𝑁𝑆𝐸 values. By contrast, the flow variation 
was accurately defined at Serrinha station in the Negro River (Figure 5e) with anomaly DA and an uncalibrated hydrodynamic 
model (∆𝑟, 𝑁𝑆𝐸𝐴𝐼, and 𝑟𝐼𝑆𝑆 were improved). Through anomaly assimilation into an uncalibrated hydrodynamic model, the 
flow dynamics (characterized by 𝑟) of the Amazon Basin improved, although 𝑁𝑆𝐸 and 𝐼𝑆𝑆 values worsened slightly.  

Figure 4: a) Difference in the correlation coefficient of river discharge (𝜟𝒓) and b) relative Root Mean Square Error (𝒓𝑹𝑴𝑺𝑬) of 
water surface elevation for Exp 1. Circles indicate virtual stations used for data assimilation, and squares are virtual stations used 
for validation on the WSE plots. Hydrographs recorded at Labera on the Purus River, Santos Dumont on the Jurua River, and 
Santo Antonio Do Ica on the Amazon River are presented in panels c, d, and e, respectively. The locations of the hydrographs shown 
in panels c, d, and e are presented in panel a. Discharge observations are shown in black, assimilated simulation results in orange, 
and open-loop simulation results in blue. The color range indicates the 95% confidence interval used to calculate the relative interval 
skill score (𝒓𝑰𝑺𝑺). ∆𝒓, Nash-Sutcliffe efficiency-based assimilation index (𝑵𝑺𝑬𝑨𝑰), and 𝒓𝑰𝑺𝑺 are shown at the bottom of each panel. 
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Overall, the discharge estimates improved moderately with the assimilation of WSE anomalies into the hydrodynamic model. 340 
The seasonality of river discharge improved considerably in most river reaches with anomaly assimilation. Furthermore, WSE 
calculation was improved in many Amazon Basin river reaches. 
 

3.1.3 Normalized assimilation of satellite altimetry  

In Exp 3, we assimilated normalized values of WSE. Long-term statistics (mean and standard deviation of WSE for 2000–345 
2014) were used to generate normalized values of DA for Exp 3a. Figure 6a and b represent the ∆𝑟 of river discharge and 
𝑟𝑅𝑀𝑆𝐸 of WSE, respectively, for Exp 3. A total of 60.5% of GRDC gauges demonstrated a positive ∆𝑟, whereas decreases 

Figure 5: a) Difference in the correlation coefficient of river discharge (𝜟𝒓) and b) relative root mean square error (𝒓𝑹𝑴𝑺𝑬) of 
water surface elevation for Exp 2. Circles indicate virtual stations used for data assimilation, and squares are virtual stations used 
for validation on the WSE plots. Hydrographs recorded at Manicore on the Madeira River, Aruma on the Purus River, and Sao 
Felipe on the Negro River are presented on panels c, d, and e, respectively. The locations of the hydrographs shown in panels c, d, 
and e are presented in panel a. Discharge observations are shown in black, assimilated simulation results in orange, and open-loop 
simulation results in blue. The color range indicates the 95% confidence interval used to calculate the relative interval skill score 
(𝒓𝑰𝑺𝑺). ∆𝒓, Nash-Sutcliffe efficiency-based assimilation index (𝑵𝑺𝑬𝑨𝑰), and 𝒓𝑰𝑺𝑺 are shown at the bottom of each panel. 
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were evident in the Purus and Madeira rivers as well as the Amazon mainstem. A considerable number of VSs showed an 
improvement in WSE calculations with the normalized DA technique (85.6% for both assimilation and validation VSs; Figure 
6b). 350 
The lower panels of Figure 6 illustrate flow dynamics along the Amazon mainstem (Sao Paulo De Olivenca; Figure 6c) 
and Japura (Vila Bittencourt; Figure 6d) and Negro (Curicuriari; Figure 6e) rivers. The discharge at Sao Paulo De Olivenca 
station in the Amazon mainstem (Figure 6d) resembled the observed river discharge. Although 𝑁𝑆𝐸𝐴𝐼 and 𝑟𝐼𝑆𝑆 were both 
enhanced, ∆𝑟 was marginally degraded. Note that normalized value DA replicated the flow dynamics of the observations well, 
showing a secondary peak (e.g., October 2009) at the Sao Paulo De Olivenca station that was absent in the open-loop simulation. 355 
Although low flows and other fluctuations were accurately portrayed along the Japura River (Vila Bittencourt; Figure 6d), the 
relative assimilation efficiency metrics had low values. Figure 6e illustrates a hydrograph of the Curicuriari gauge along the 

Figure 6: a) Difference in the correlation coefficient of river discharge (𝜟𝒓) and b) relative root mean square error (𝒓𝑹𝑴𝑺𝑬) of 
water surface elevation for Exp 3. Circles indicate virtual stations used for data assimilation, and squares are virtual stations used 
for validation on the WSE plots. Hydrographs recorded at Humaita on the Madeira River, Santos Dumont on the Jurua River, and 
Canutama on the Purus River are presented on panels c, d, and e, respectively. The locations of the hydrographs shown in panels c, 
d, and e are presented in panel a. Discharge observations are in black, assimilated simulation results in orange, and open-loop 
simulation results in blue. The color range indicates the 95% confidence interval used to calculate relative interval skill score (𝒓𝑰𝑺𝑺). 
∆𝒓, Nash-Sutcliffe efficiency-based assimilation index (𝑵𝑺𝑬𝑨𝑰), and 𝒓𝑰𝑺𝑺 are shown at the bottom of each panel. 
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Negro River. The discharge at Curicuriari was well characterized, with a positive ∆𝑟  and 𝑁𝑆𝐸𝐴𝐼  and a negative 𝑟𝐼𝑆𝑆 . 
Normalized DA using an uncalibrated hydrodynamic model improved the characterization of river discharge in terms of 
seasonal dynamics, overall accuracy, and the tradeoff between sharpness and reliability. 360 
The normalized DA approach improves flow variation in most river reaches. In the normalized assimilation experiment, WSE 
estimates improved in most Amazon Basin river reaches. 

3.1.4 Comparison of assimilation experiments 

To evaluate the relative improvement associated with DA, we evaluated only those GRDC gauges located in river reaches 
observed through satellite altimetry (satellite coverage; Figure S1). The effectiveness of assimilation for GRDC gauges located 365 
outside the area of the satellite observations is poor, with very little difference between open-loop and assimilated simulations.  
Approximately 75% of the 86 GRDC gauges lay outside the satellite coverage area (Figure S1). The 21 gauges within the 
satellite coverage area were used to assess the relative improvement among experiments. Table 2 presents median relative 
performance statistics for river discharge estimates for all experiments. Positive values for ∆𝑟 , 𝑁𝑆𝐸𝐴𝐼 , 𝐾𝐺𝐸𝐴𝐼 , and 
∆𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 indicate that DA improved river discharge estimation. Negative values for 𝑟𝐼𝑆𝑆 and 𝑟𝑆ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠, in contrast, 370 
demonstrate improvement in river discharge estimation with DA.  For all experiments, Figure 7a displays the kernel density 
estimate of the probability density function for the Δ𝑟  of the river discharge. All experiments except Exp 1 showed 
improvement in the median ∆𝑟	(> 0), demonstrating improvement in the flow regime with DA for at least 50% of gauges. 
The ∆𝑟 for river discharge in Exp 1 showed a left-skewed distribution, which suggests deterioration in seasonality at many 
gauges (75%). Approximately 70% of gauges showed improvements in flow regime characterization in the anomaly and 375 
normalized value DA experiments. However, only Exp 3 had a positive median 𝑁𝑆𝐸𝐴𝐼, which indicates that at least 50% of 

Figure 7: a) Cumulative distribution of the correlation coefficient (∆𝒓) for each experiment, shown in blue, yellow, and red for 
direct (Exp 1), anomaly (Exp 2), and normalized value (Exp 3), respectively. b) Boxplots of the Nash-Sutcliffe based assimilation 
index (𝑵𝑺𝑬𝑨𝑰) of assimilated compared to open-loop discharge for all the experiments. Boxes in blue, yellow, and red indicates 
direct (Exp 1), anomaly (Exp 2), and normalized value (Exp 3), respectively. 
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gauges had improved 𝑁𝑆𝐸  values with normalized value DA (Table 2). Figure 7b shows boxplots of 𝑁𝑆𝐸𝐴𝐼  for all 
experiments, demonstrating considerable improvement in the DA experiments with normalized value assimilation. 𝐾𝐺𝐸𝐴𝐼 
followed the same pattern, with positive median values for Exp 3.  
Compared to 𝛥𝑟, 𝑁𝑆𝐸𝐴𝐼, and 𝐾𝐺𝐸𝐴𝐼, 𝑟𝐼𝑆𝑆 showed the opposite trend (Figure S2a), with major improvements resulting from 380 
direct DA. A negative 𝑟𝐼𝑆𝑆  means that the 𝐼𝑆𝑆  of assimilated discharge was improved, as a lower 𝐼𝑆𝑆  indicates better 
performance with DA. Direct assimilation (Exp 1) led to a lower median 𝑟𝐼𝑆𝑆 value (–0.36), whereas both anomaly and 
normalized value assimilation had values –0.13 and –0.18, respectively. When evaluating 𝑟𝐼𝑆𝑆, one must consider changes in 
sharpness (i.e., the width of the confidence interval) and reliability (i.e., the percentage of observations that fall within the 
predicted nominal confidence interval; (Michailovsky et al., 2013). A large reduction in sharpness was observed in the direct 385 
assimilation experiment (Exp 1), mainly because the assimilation was conducted directly (Figure 4c–e). The lowest reliability 
reduction was obtained in the normalized value assimilation experiment (Exp 3). The reliability of direct assimilation was 
reduced by 54%, whereas sharpness improved by 79% in Exp 1 compared to the open-loop simulation (i.e., the 95% confidence 
interval was larger in the open-loop simulation; Figure S2b–c). Although the confidence bounds (i.e., 𝑠ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠) were 
narrower with direct DA compared to the anomaly and normalized value DA experiments, reliability was degraded by more 390 
than 50%. 
In summary, considering the improvements measured using multiple evaluation metrics (e.g., 𝑁𝑆𝐸𝐴𝐼, 𝐾𝐺𝐸𝐴𝐼), normalized 
value assimilation (Exp 3) showed the greatest improvement relative to the open-loop simulation, whereas the smallest 
improvement was obtained from the direct DA experiment (Exp 1). However, the tradeoff between sharpness and reliability 
was better in the direct DA experiment, as the assimilations were performed directly. Sharpness was substantially improved in 395 
Exp 1. In anomaly and normalized value assimilations, WSE space is affected by the calculation of anomalies or normalized 
values. Hence, given the current condition of hydrodynamic modeling (i.e., the limitations of hydrodynamic models), 
normalized value assimilation performed best. 
 
Table 2: Summary of relative DA efficiency statistics for river discharge in each experiment. The difference in the correlation 400 
coefficient (∆𝒓) , Nash-Sutcliffe efficiency-based assimilation index (𝑵𝑺𝑬𝑨𝑰) , Kling-Gupta efficiency-based assimilation index 
(𝑲𝑮𝑬𝑨𝑰), relative interval skill score (𝒓𝑰𝑺𝑺), relative sharpness (𝒓𝑺𝒉𝒂𝒓𝒑𝒏𝒆𝒔𝒔), and difference in reliability (∆𝑹𝒆𝒍𝒊𝒂𝒃𝒊𝒍𝒊𝒕𝒚) are 
shown. Positive values for ∆𝒓, 𝑵𝑺𝑬𝑨𝑰, 𝑲𝑮𝑬𝑨𝑰, and reliability represent better performance of DA, and lower values for 𝒓𝑰𝑺𝑺 and 
sharpness indicate improvements due to DA. Improvements in each relative performance metric with DA are highlighted in bold 

Experiment ∆𝑟 𝑁𝑆𝐸𝐴𝐼 𝐾𝐺𝐸𝐴𝐼 𝑟𝐼𝑆𝑆 𝑟𝑆ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠 ∆𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 

Exp 1 -0.02 -0.93 -0.72 -0.36 -0.79 -0.54 

Exp 2 0.01 -0.39 -0.39 -0.13 -0.14 -0.01 

Exp 3 0.01 0.21 0.02 -0.18 -0.15 0.00 

 405 

3.2 Absolute Performance Evaluation 

In this section, we explore the absolute performance of river discharge and WSE. When analyzing absolute performance, we 
consider the 𝑟, 𝑁𝑆𝐸 (Nash and Sutcliffe, 1970), and 𝐾𝐺𝐸 (Gupta et al., 2009) values for river discharge; 𝑅𝑀𝑆𝐸, 𝐵𝐼𝐴𝑆, and 
∆𝐴 are used for WSE. 𝑟 is used to assess the seasonality of river discharge estimates, whereas 𝑁𝑆𝐸 and 𝐾𝐺𝐸 are used to 
evaluate the overall performance of river discharge estimation. 𝑅𝑀𝑆𝐸 is used to evaluate the overall error of WSE estimation 410 
against satellite altimetry observations. Long-term bias is assessed with 𝐵𝐼𝐴𝑆 , and the difference in amplitude between 
simulated and observed WSE is examined using ∆𝐴. 3.2.1The absolute performance of daily discharge estimates is presented 
in Section 3.2.1, and the absolute performance of WSE estimation is described in Section 3.2.2. 
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3.2.1 Estimation of daily river discharge 

We used 𝑟, 𝑁𝑆𝐸, 𝐾𝐺𝐸, and 𝑆ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠 to evaluate daily assimilated river discharge across all experiments, and Table 3 415 
presents the median statistics for each metric. We obtained the reported median values using all GRDC gauges in the Amazon 
Basin (all) and, more conservatively, using river reaches with satellite altimetry observations (satellite coverage reaches) so 
the impact of assimilation on river reaches outside the satellite observation area was minimal. In general, the median 
performance metrics in satellite coverage river reaches were better than the median performance of all discharge gauges, 
whereas median 𝑆ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠 was worse in satellite coverage river reaches. 𝑆ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠 was determined with the average 420 
confidence bounds, and river reaches with satellite coverage have high discharge, resulting in larger confidence intervals. 
Consequently, the median 𝑆ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠 estimate for river reaches with satellite coverage was inevitably large. When only river 
reaches with satellite observations were considered, the 𝑁𝑆𝐸 of Exp 1 was reduced. Flow patterns improved with the shift 
from direct to anomaly or normalized value DA. However, the differences between the anomaly and normalized DA 

Figure 8: Performance of daily discharge in terms of the correlation coefficient (𝒓), Nash-Sutcliffe efficiency (𝑵𝑺𝑬), and Kling-
Gupta efficiency (𝑲𝑮𝑬) for a) Exp 1, b) Exp 2, and c) Exp 3. 
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experiments were marginal. Median 𝑁𝑆𝐸 and 𝐾𝐺𝐸 values increased in the order of direct, anomaly, and normalized value DA 425 
experiments. However, the direct DA experiments efficiently improved 𝑆ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠, thereby increasing confidence in the 
assimilated river discharge. Exp 1 had the lowest sharpness values for both the entire river and satellite-covered reaches.  
Figure 8 shows the spatial distributions of absolute performance metrics (e.g., 𝑟, 𝑁𝑆𝐸, and 𝐾𝐺𝐸) for daily river discharge in 
all DA experiments (Exp 1, Exp 2, and Exp 3). Figure 8a depicts the spatial distribution of the absolute performance of river 
discharge estimates obtained in the direct DA experiment (Exp 1). The 𝑟 of river discharge estimation for several GRDC 430 
gauges was > 0.8 (approximately 38%), with a mean 𝑟  of 0.73. 𝑁𝑆𝐸  and 𝐾𝐺𝐸  were > 0.6 in 22% and 34% of gauges, 
respectively, and the median 𝑁𝑆𝐸 and 𝐾𝐺𝐸 were 0.13 and 0.46, respectively. Some gauges along the Negro, Jurua, and Upper 
Solimoes rivers had low accuracy for estimating river discharge through direct DA (Exp 1). 
The spatial distribution of the absolute performance of river discharge estimation through anomaly DA is shown in Figure 8b. 
Anomaly DA (Exp 2) produced 𝑟 values of river discharge that were > 0.8 in 84% of gauges, with a median 𝑟 = 0.84. In the 435 
Amazon Basin, overall river discharge was well characterized by anomaly DA (35% of stations 𝑁𝑆𝐸 > 0.6 and 48% of stations 
𝐾𝐺𝐸 > 0.6). 
Figure 8c illustrates the performance of Exp 3, showing better performance in large river reaches (𝑐𝑎𝑡𝑐ℎ𝑚𝑒𝑛𝑡	𝑎𝑟𝑒𝑎 >
1000	𝑘𝑚3). Nearly 57% of GRDC gauges had 𝑟 > 0.8, with a median 𝑟 of 0.83 in Exp 3. The preponderance of gauges (76%) 
had 𝑁𝑆𝐸 > 0.6, with a median 𝑁𝑆𝐸 of 0.47. 𝐾𝐺𝐸 values were greater than 0.6 for 92% of gauges, with a median of 0.62. 440 
Most gauges along the Amazon mainstem and Negro, Purus, Madeira, and Jurua rivers reliably estimated river discharge with 
assimilation of satellite altimetry using the normalized value DA method. 
 
Table 3: Median performance metrics for daily discharge estimates obtained from DA experiments. Median values for the 
correlation coefficient (𝒓), Nash-Sutcliffe efficiency (𝑵𝑺𝑬), Kling-Gupta efficiency (𝑲𝑮𝑬), and width of the confidence interval 445 
(𝑺𝒉𝒂𝒓𝒑𝒏𝒆𝒔𝒔) are presented for all GRDC gauges and gauges in the satellite coverage area. 

Experiment 
All Satellite Converge Reaches 

𝑟 𝑁𝑆𝐸 𝐾𝐺𝐸 𝑆ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠	(10<) 𝑟 𝑁𝑆𝐸 𝐾𝐺𝐸 𝑆ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠	(10<) 
Exp 1 0.74 0.13 0.46 1.09 0.88 0.21 0.48 5.79 
Exp 2 0.85 0.39 0.55 1.18 0.95 0.66 0.70 13.91 
Exp 3 0.84 0.50 0.62 1.17 0.95 0.76 0.72 14.37 

 

3.2.2 Estimation of water surface elevation 

Although we used river discharge to evaluate assimilation efficiency, WSE is an important water dynamic estimator, in 
particular for predicting floods. Table 4 summarizes the evaluation results of the assimilated using satellite altimetry 450 
measurements. We evaluated the 𝑅𝑀𝑆𝐸, 𝐵𝐼𝐴𝑆, and ∆𝐴 of WSE between assimilated and observed values. 𝑅𝑀𝑆𝐸 represents 
the total departure from observations, whereas 𝐵𝐼𝐴𝑆 denotes the difference in long-term mean values between simulation 
results and observations. The mean difference in the variation in the yearly peak and trough of the hydrograph was identified 
with ∆𝐴. Transitioning from direct to normalized value assimilation did not reduce 𝑅𝑀𝑆𝐸 or 𝐵𝐼𝐴𝑆. Nevertheless, the anomaly 
and normalized assimilation methods improved the amplitude of WSE more than direct DA. Similar patterns were observed 455 
for the assimilation and validation VSs. The 𝐵𝐼𝐴𝑆 of WSE, which accounts for a considerable portion of 𝑅𝑀𝑆𝐸, was not 
corrected in the anomaly or normalized value assimilations.  
Figure 9 illustrates the spatial distributions of the 𝑅𝑀𝑆𝐸, 𝐵𝐼𝐴𝑆, and ∆𝐴 of WSE for Exp 1 (Figure 9a), Exp 2 (Figure 9b), and 
Exp 3 (Figure 9c). Median 𝑅𝑀𝑆𝐸 and 𝐵𝐼𝐴𝑆 were lowest with direct DA (Exp 1), but ∆𝐴 was larger than in the anomaly and 
normalized value DA experiments for all, assimilation, and validation VSs. 𝑅𝑀𝑆𝐸 and 𝐵𝐼𝐴𝑆 were lower along the lower 460 
Amazon mainstem and Negro River (𝑅𝑀𝑆𝐸 < 3𝑚	𝑎𝑛𝑑	𝐵𝐼𝐴𝑆 < 2𝑚) compared to other river reaches. However, ∆𝐴	(> 4𝑚) 
was less accurately estimated with direct DA than with other methods.  
Large 𝑅𝑀𝑆𝐸 values (> 4𝑚) were obtained for the Madeira, upper Purus, and upper Solimoes rivers in anomaly DA (Exp 2; 
Figure 9b). Large 𝐵𝐼𝐴𝑆 values occurred in the Amazon mainstem, Purus River, and Japura River, with 𝐵𝐼𝐴𝑆 > 4𝑚. The 
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annual variation in WSE (amplitude) differed considerably in some areas of the Amazon and Negro River mainstems 465 
(∆𝐴 > 8𝑚).  
With normalized DA (Exp 3), a large 𝑹𝑴𝑺𝑬	(> 𝟒𝒎) was observed in the Madeira River, downstream reaches of the Amazon 
mainstem, and upper Purus River. Large 𝑩𝑰𝑨𝑺 values occurred in the mid-section of the Amazon mainstem and Japura River 
(𝑩𝑰𝑨𝑺 > 𝟔𝒎). ∆𝑨 was particularly high in some sections of the Amazon mainstem and Negro River (|∆𝑨| > 	𝟖𝒎). In 
summary, direct DA estimated WSE with low 𝑹𝑴𝑺𝑬 and 𝑩𝑰𝑨𝑺 values, whereas the best ∆𝑨 was obtained with anomaly DA. 470 

Table 4: Median performance metrics for water surface elevation estimates obtained from DA experiments. Median values for the 
root mean square error (𝑹𝑴𝑺𝑬), long-term bias (𝑩𝑰𝑨𝑺), and difference in amplitude (∆𝑨) are presented for all, assimilation, and 
validation VSs. 

Figure 9: Performance of water surface elevation estimation in terms of the root mean square error (𝑹𝑴𝑺𝑬), bias between 
assimilation results and observations (𝑩𝑰𝑨𝑺) , and mean differences in amplitude between assimilation results and 
observations (∆𝑨) for a) Exp 1, b) Exp 2, and c) Exp 3. 
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Experiment 
All Assimilation Validation 

𝑅𝑀𝑆𝐸 𝐵𝐼𝐴𝑆 ∆𝐴 𝑅𝑀𝑆𝐸 𝐵𝐼𝐴𝑆 ∆𝐴 𝑅𝑀𝑆𝐸 𝐵𝐼𝐴𝑆 ∆𝐴 
Exp 1 4.56 2.38 3.86 4.58 2.39 3.68 4.25 1.90 4.75 
Exp 2 4.80 2.82 1.60 4.79 2.83 1.53 4.88 2.69 2.08 
Exp 3 4.80 2.76 1.75 4.78 2.74 1.72 4.96 2.84 2.10 

 

3.3 Comparison of Discharge Products 475 

To investigate the accuracy of river discharge estimation using DA compared to state-of-the-art hydrodynamic modeling, we 
compared river discharge obtained from CaMa-Flood forced with bias-corrected variable infiltration capacity LSM (Liang et 
al., 1994) runoff (Lin et al., 2019) data (VIC BC) , direct DA (Exp 1), anomaly DA (Exp 2), and normalized value DA (Exp 
3). We used VIC BC runoff (Lin et al., 2019) to force discharge without DA, whereas ensemble mean discharge was examined 
for all DA experiments. VIC BC runoff is produced with sparse cumulative density function matching, and combining VIC 480 
BC runoff with the CaMa-Flood hydrodynamic model yields more accurate discharge estimates (Lin et al., 2019). A 
comparison of boxplots showing 𝑁𝑆𝐸 for various discharge products is presented in Figure 10. The median 𝑁𝑆𝐸 for discharge 
determined using CaMa-Flood standard settings (CaMa VIC BC) was 0.42. Normalized value assimilation (Exp 3) provided 

Figure 10: a) Boxplot of Nash-Sutcliffe efficiency (𝑵𝑺𝑬) for discharge simulated using CaMa-Flood with VIC bias-corrected 
runoff (CaMa-Flood VIC BC), mean assimilated with direct DA (Exp 1), mean assimilated with anomaly DA (Exp 2), and mean 
assimilated with normalized value DA (Exp 3). b) Spatial distribution of the best discharge estimates among CaMa VIC BC, Exp 
1, Exp 2, and Exp 3 based on 𝑵𝑺𝑬. 
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the best river discharge estimates, with a median	𝑁𝑆𝐸 of 0.50, whereas direct and anomaly DA produced medians of 0.13 and 
0.39, respectively. For normalized value DA, 𝑁𝑆𝐸	values of river discharge were confined to around 0.5, with many of the 485 
gauges demonstrating 𝑁𝑆𝐸  values greater than zero. Hence, normalized value assimilation improved the 𝑁𝑆𝐸  of river 
discharge compared to standard CaMa-Flood modeling and the other DA methods tested (i.e., anomaly and direct assimilation). 
Assessing the spatial distribution of the optimal discharge product is critical to improving discharge estimates globally. Figure 
10b shows the heterogeneity of the optimal discharge estimate among the four products. River discharge was compared based 
on the 𝑁𝑆𝐸 of each discharge product. Exp 3, which accounted for 44% of the gauges, most accurately estimated discharge 490 
overall. Exp 2 estimated river discharge more accurately for 24% of GRDC gauges. Direct DA provided better estimates for 
23% of gauges, whereas CaMa VIC BC estimated river discharge accurately for 8% of gauges. Note that the discharge 
estimates of some of the gauges located on the Amazon mainstem were better without DA. Most gauges with the most accurate 
discharge estimates of CaMa-Flood VIC BC were located outside of satellite-observed river reaches and were marginally 
affected by DA.  495 
In conclusion, normalized value DA (Exp 3) performed best for estimating river discharge, but uncalibrated CaMa-Flood 
simulations without DA (i.e., CaMa VIC BC) were more accurate than other DA methods (i.e., direct and anomaly 
assimilation). Hence, assimilating satellite altimetry can improve the accuracy of river discharge estimates compared to current 
state-of-the-art hydrodynamic modeling. 

4 Discussion 500 

4.1 DA Performance With Current Hydrodynamic Models 

We compared several DA methods to overcome the errors associated with assimilating satellite altimetry observations directly 
into a hydrodynamic model. Through the assimilation of anomalies or normalized values, river discharge estimation was 
improved considerably compared to direct DA (Figure 7). Although WSE was correctly assimilated with direct DA (Figure 
9a), river discharge estimates were inaccurate because of parameter errors and discrepancies in flow dynamics driven by 505 
limited representation of actual physical phenomena (as illustrated in Figure 2). These biases can be caused by discrepancies 
in parameters such as riverbank-full height and river bottom elevations. For example, when river channel depth was 
overestimated in the model, simulated WSE was lower than the observations. When assimilated WSE was converted into the 
CaMa-Flood prognostic variable (i.e., storage), the initial condition could be erroneous. Such errors were propagated to river 
discharge. In areas where the simulated water dynamics (e.g., amplitude and flow regime) were similar to observations, 510 
anomaly assimilation limited the extent to which the biases affected assimilation (Emery et al., 2020a; Paiva et al., 2013a; 
Wongchuig-Correa et al., 2020). Although spurious errors (due to limited ensemble size) were regulated using physically-
based empirical localization patches (Revel et al., 2019), direct DA was adulterated because of the biases and dynamic 
differences in WSE simulations. 
Normalized value assimilation showed better assimilation efficiency in terms of 𝑁𝑆𝐸𝐴𝐼, representing the overall accuracy of 515 
discharge estimation, compared to the anomaly DA method (Figure 7). Currently the CaMa-Flood hydrodynamic model cannot 
accurately represent the dynamics of WSE because of limitations in the model framework (e.g., a lack of representation of 
water regulations, diversions, and lake dynamics) and the impacts of water dynamics other than river flow. These limitations 
also exist for most global hydrodynamic models, which do not accurately represent reservoirs, diversions, and lakes 
(Fleischmann et al., 2021). For example, when reservoir operations are not represented in a hydrodynamic model, assimilating 520 
observations obtained during reservoir operation will alter the flow regime. In addition, errors related to the model structure 
hamper the prediction of surface water dynamics and may produce a different flow dynamic than the observations. Therefore, 
normalized value assimilation provided the best estimates of river discharge given the current limitations of models such as 
biases and poor representation of flow dynamics. 
Moreover, the assimilation framework is computationally efficient and effective at removing spurious correlations. LETKF is 525 
a computationally efficient filtering method that uses a local area for assimilation (Hunt et al., 2007; Miyoshi and Yamane, 
2007). In addition, we used a physically-based empirical localization technique (Revel et al., 2019) to reduce erroneous 
correlations and assimilate observations in significantly correlated areas. Hence, the assimilation framework is capable of 
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estimating river discharge at the global scale provided satellite observations are available. Once the SWOT satellite is launched, 
the methods developed in this study will be valuable for accurately estimating river discharge.  530 
 

4.2 DA Performance Under Various Conditions 

To examine DA performance under model conditions such as biased runoff forcing and corrupted river bathymetry, we 
performed biased runoff and corrupted bathymetry experiments. An artificial bias of –50% was introduced to the ensemble 
mean of the “Runoff Ensemble” (Figure 1a) for each assimilation approach, namely, direct DA, anomaly DA, and normalized 535 
value DA (Supplementary Text S1, Figure S3). Because of the bias introduced by the runoff forcing, river discharge and WSE 
were approximately 50% lower in the open-loop simulation than in the observations. We artificially corrupted the river 
bathymetry to represent errors in the hydrodynamic model (Supplementary Text S2, Figure S4). River channel depth was 
increased by 25% in the corrupted bathymetry experiment. Then we assimilated satellite altimetry into the hydrodynamic 
model with corrupted river bathymetry through the direct, anomaly, and normalized value DA methods. In general, the WSE 540 
was reduced by approximately 25% of the river channel depth. For simplicity, we used only a single runoff (HTEESSEL; 
Balsamo et al., 2011) from E2O WRR2 to prepare the runoff ensemble. The HTEESSEL runoff from E2O WRR2 is fairly 

Figure 11: Comparison of Nash-Sutcliffe efficiency (𝑵𝑺𝑬) of assimilated river discharge under various conditions: a) without runoff 
bias or bathymetry error, b) without runoff bias and with bathymetry error, c) with runoff bias and without bathymetry error, and 
d) with runoff bias and bathymetry error. The direct, anomaly, and normalized value DA results are represented in blue, yellow, 
and red, respectively. 
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unbiased (Dutra et al., 2017; Revel et al., 2021), and the default bathymetry parameter of CaMa-Flood should provide adequate 
WSE estimates (Yamazaki et al., 2012). Simulations using the default CaMa-Flood bathymetry parameter and HTEESSEL 
runoff are referred to as “normal conditions”. 545 
Runoff bias and bathymetry errors affect the accuracy of assimilated river discharge in different ways. When neither runoff 
nor bathymetry was erroneous, the normalized value DA method performed best (median 𝑁𝑆𝐸 = 0.83) at estimating river 
discharge in terms of 𝑁𝑆𝐸 (Figure 11a). The best river discharge estimates were obtained with anomaly DA (median 𝑁𝑆𝐸 =
−0.45) when the bathymetry contained some errors, but runoff was unbiased (Figure 11b). Bias in the runoff ensemble strongly 
affected the accuracy of river discharge estimation with anomaly and normalized value DA, as bias in runoff causes bias in the 550 
mean and standard deviation used to generate WSE anomalies and normalized values (Figure 11c). Direct DA provided the 
best discharge estimation (median 𝑁𝑆𝐸 = 0.68) when runoff was biased. When both runoff and river bathymetry were 
erroneous, none of the DA methods produced better discharge estimates than open-loop simulation. Therefore, the normalized 
DA method worked well under normal conditions, but anomaly DA produced better discharge estimates when the river 
bathymetry had errors, and the direct DA method performed best under runoff-biased conditions. Simple calibration of the 555 
hydrodynamic model is recommended for successful normalized value DA (i.e., bias correction of runoff to obtain the mean 
discharge and river bathymetry calibration to accurately determine mean WSE). 

4.3 DA Performance With Calibrated River Bathymetry  

To investigate the performance of DA using a hydrodynamic model with calibrated river bathymetry, we used rating curve 
calibration (Zhou et al., 2022) to correct the river bathymetry (Supplementary Text S3). Investigating the performance of DA 560 
with corrected bathymetry is essential, as river bathymetry is the most influential parameter for WSE (Brêda et al., 2019). 
Calibrating the river bathymetry increases the accuracy of the hydraulic relationship between discharge and WSE (i.e., the 
rating curve; (Zhou et al., 2022), thereby improving discharge estimation with direct DA (median 𝑁𝑆𝐸𝐴𝐼 = −0.50; Figure 
12). Minimization of the WSE bias attributable to river bathymetry improved discharge estimates obtained with the direct DA 
method, although the anomaly and normalized value DA approaches had little effect on the estimation of river discharge 565 
(Figure 12b and c). River discharge estimation can be improved by updating river-related parameters. However, anomaly and 
normalized value assimilation (with and without river bathymetry calibration) had greater assimilation efficiencies than direct 
DA with the calibrated model. Therefore, correcting river-related parameters is essential to achieving good river discharge 
estimates with direct DA. 
Furthermore, the bathymetry parameters calibrated with the rating curve approach were the most accurate values attainable 570 
under current conditions (Zhou et al., 2022). However, direct DA was not capable of producing more accurate river discharge 
estimates than other DA approaches (i.e., anomaly and normalized value DA; Figure 12). This finding indicates that calibrating 
a single parameter (i.e., river bathymetry) may be insufficient to improve the overall accuracy of river discharge estimation 
using direct DA.  Hence, calibrating other river-related parameters (e.g., riverbank height, floodplain profile, and cross-
sectional shape) is necessary to increase assimilation efficiency (median 𝑁𝑆𝐸𝐴𝐼	 > 	0) when assimilating satellite altimetry 575 
data directly into large-scale hydrodynamic models such as CaMa-Flood. 
Direct DA offers several benefits over anomaly or normalized value assimilation. Although the direct DA approaches reduced 
overall accuracy, the sharpness of the ensemble spread was substantially reduced compared to the anomaly and normalized 
value DA approaches (e.g., Figure 4c–e). In addition, the improvement in the accuracy of river discharge estimates with 
anomaly or normalized value assimilation was lower in river reaches with high biases in open-loop runoff estimation (Figure 580 
S5). This finding suggests that direct DA methods can be used to correct river discharge values in river reaches where runoff 
causes large biases, but the river bathymetry parameter is reasonably accurate. By contrast, the reliability of discharge estimates 
in the anomaly and normalized DA experiments was highly dependent on the quality of the runoff ensemble. Therefore, direct 
assimilation has several advantages, such as greater confidence in DA-estimated river discharge and accurate discharge 
estimation even when the runoff ensemble is biased. 585 
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4.4 Potential and Limitations of River Hydrodynamics DA 

The development of a discharge reanalysis product (such as those described by Feng et al., 2021; Wongchuig et al., 2019) is 
crucial to evaluating the reliability of assimilated discharge product within the capabilities of current hydrodynamic modeling. 
In addition, reanalyzes of river discharge play an important role in biodiversity and biogeochemistry research (Messager et al., 
2021). Discharge estimated from the assimilation of satellite altimetry characterized the flow dynamics of the Amazon Basin 590 
better than estimates from a state-of-the-art hydrodynamic model (Figure 10). However, CaMa-Flood modeled river discharge 
better than the assimilated product in certain river reaches along the Amazon mainstem. These discrepancies are primarily due 
to the limitations of hydrodynamic modeling, as the assimilated WSEs were adequately represented in the assimilated 
simulation. As we assimilated WSE and corrected the initial conditions of the following time step using CaMa-Flood 
parameters (e.g., riverbank height, river bathymetry, river width, and floodplain profile), the errors of the modeling framework 595 
may have propagated into the river discharge estimates at the next time step. These limitations can be circumvented through 
the assimilation of in situ or remotely sensed river discharge observations into hydrodynamic models (Emery et al., 2020b; 
Feng et al., 2021; Paiva et al., 2013a; Wongchuig et al., 2019). Yet with decreasing numbers of in situ gauges (Hannah et al., 
2011; Shiklomanov et al., 2002; Vörösmarty et al., 2001) and low accuracy of remotely sensed river discharge estimates 
(Bjerklie et al., 2018; Gleason and Durand, 2020; Gleason and Smith, 2014), obtaining consistent and reliable observations 600 
can be difficult. 
DA of satellite altimetry had several advantages over hydrodynamic modeling, in particular when it came to accurately 
estimating low flows and unanticipated peaks that were not reflected in the runoff forcing (Figure S6). These unexpected peaks, 
which were not as large as annual peaks, were characterized well by DA methods (Figure S6), although the open-loop 
simulation did not identify them. Low flows were estimated well with normalized assimilation and further improved through 605 
calibration of river bottom elevation (Supplementary Text S4, Figure S7). Hence, the DA scheme accurately represented low 
flows and unforeseen secondary peaks.  
The normalized DA approach may have been unable to accurately predict other variables, such as WSE and flood extent, as 
the assimilation was performed in transformed space. WSE estimation using normalized value DA had lower overall accuracy 
than direct DA (Figure 7) based on median 𝑅𝑀𝑆𝐸 (Table 4). Moreover, flood extent would be better estimated with direct DA 610 
than other DA methods, as flood extent is diagnosed with WSE in the CaMa-Flood hydrodynamic model. Hence, normalized 
DA may be unable to effectively predict various important variables (e.g., WSE and flood extent). 

Figure 12: Boxplot comparison of Nash-Sutcliffe efficiency-based assimilation index (𝑵𝑺𝑬𝑨𝑰)  values for uncalibrated and 
calibrated models with a) direct DA, b) anomaly DA, and c) normalized value DA. 
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5 Conclusion 

In this study, we explored strategies for assimilating satellite altimetry data into a contemporary hydrodynamic model. As 
existing large-scale hydrodynamic models either are too conceptual or have uncertainties in their parameter schemes, direct or 615 
anomaly assimilation of satellite altimetry may introduce inaccuracies due to discrepancies between satellite altimetry and 
simulated WSE. We assessed direct, anomaly, and normalized value DA schemes using a continental-scale hydrodynamic 
model, CaMa-Flood (Yamazaki et al., 2011). We used the physically based localization approach of LETKF to assimilate 
satellite altimetry data in the Amazon Basin. Normalized value assimilation performed better than other approaches at 
estimating river discharge in this continental-scale river basin. River discharge was accurately estimated with normalized value 620 
assimilation in most river reaches covered by satellite observations (𝑁𝑆𝐸	 > 	0.6).  
We investigated the capacity of DA approaches to reliably estimate river discharge through cutting-edge hydrodynamic 
modeling. River discharge was well characterized in the normalized value assimilation experiments, with a median 𝑁𝑆𝐸 ≈
0.47	, which was better than the river discharge produced by the uncalibrated model with default parameters using HTEESSEL 
runoff (Balsamo et al., 2011) (median 𝑁𝑆𝐸 ≈ 0.13 ). The median 𝑁𝑆𝐸  of river discharge improved by 34% with the 625 
assimilation of satellite altimetry into a continental-scale hydrodynamic model. Improvements were evident across the entire 
Amazon Basin; however, some degradation occurred due to underestimation of peak river discharge in the Amazon mainstem. 
This underestimation of peaks may be attributable to uncertainties in other parameters of the hydrodynamic model. 
The estimation of river discharge using DA methods is variable and depends on the state of the runoff data (i.e., bias) and the 
accuracy of river cross-section parameters (i.e., river bathymetry). When the runoff was biased and lacked river bathymetry 630 
error, the direct DA approach performed best. When the river bathymetry was erroneous, anomaly DA performed best. 
However, when runoff was biased and river bathymetry was erroneous, none of the DA methods performed better than open-
loop simulation. Hence, depending on the runoff and river bathymetry, different DA approaches should be used. To realize the 
advantages of the normalized value DA approach, basic model calibration is necessary, such as calibration of runoff to capture 
the mean discharge and moderate calibration of bathymetry to capture WSE patterns. 635 
River bathymetry calibration enhanced the accuracy of the river discharge estimates produced using the direct DA method but 
had minimal effect on normalized assimilation. Zhou et al., (2022) used a calibration strategy to increase the accuracy of river 
bathymetry by decreasing WSE error utilizing the stage-discharge relationship; they found that the approach does not 
necessarily improve river discharge accuracy. In addition, when the calibrated model was forced by runoff with large errors, 
normalized DA did not improve the estimation of river discharge because of bias in the mean discharge and WSE. The quality 640 
of runoff perturbation data should be evaluated before they are used in anomaly or normalized value assimilations.   
The use of precise river cross-section estimates, and floodplain dynamic processes may improve peak discharge estimates. To 
represent the river discharge more accurately, some improvements to the CaMa-Flood hydrodynamic model may be necessary. 
Furthermore, assimilating multiple variables such as river discharge, WSE, and flooded area may improve discharge estimates 
further. Overall, the methods developed in this study demonstrate great potential for using available satellite altimetry to 645 
improve river discharge estimation in continental-scale rivers within the limitations of current hydrodynamic models.  

6 Code Availability 

The DA code is open source and freely available from https://github.com/MenakaRevel/HydroDA.git. CaMa-Flood is freely 
available from http://hydro.iis.u-tokyo.ac.jp/~yamadai/cama-flood/ or git@github.com:global-hydrodynamics/CaMa-
Flood_v4.git (Yamazaki et al., 2011). 650 

7 Data Availability 

The key data sets used in this study are available from https://doi.org/10.4211/hs.08e1b18aa9f240758dd13d9ac875621f (Revel 
et al., 2022). The source code used for data assimilation (DOI: 10.5281/zenodo.6506861) is publicly available. Satellite 
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altimetry data used in this study can be obtained from https://hydroweb.theia-land.fr/. GRDC river discharge observations are 
available from https://portal.grdc.bafg.de. Runoff data of E2O WRR2 can be accessed at https://wci.earth2observe.eu.  655 
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